1. Introduction 3. Accurate modC calls, concordant with WGBS

4. Allele-specific Methylation can be identified in a
single sequencing experiment

There is more to DNA than A, C, G and T. Epigenetics plays a causal role in cell fate,
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Constrained to measuring four states of information, existing NGS-based technologies
sacrifice genetic insight (ability to differentiate C and T) for methylation calling.
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analysed in this study, we observe ASM at numerous loci across the

genome, consistent across replicates and samples. The methodology for
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All samples were down-sampled to 36.6X (minimum observed) genomic coverage. Top and bottom strand
CpGs were merged, yielding a maximum of ~29 million possible CpG sites. (b)-(d) aggregate data from all 14
samples. (a) Empirical distribution of CpG coverage for one sample (HG001). (b) Empirical cumulative
distribution for the number of CpGs achieving a minimum coverage level across all samples with each
technology. 5-letter seq and EM-seq cover the same CpGs more consistently than WGBS. (c) Normalised
mean coverage near Transcription Start Sites. (d) Empirical distribution of coverage in CpG shelves, shores,
and-islands.

Data Processing

genomic annotation

We further validated epigenetic calls by comparing methylation fraction given different genomic
annotations. All data presented here is averaged over all samples. (d) As expected, we observe
decreased methylation near TSS (transcription start sites) in all technologies. (e) Violin plots
showing the distribution of methylation fraction at different genomic annotations. In all
technologies we observe signature low methylation at promoter regions and 5' UTRs.

Adapter sequences were trimmed using CUTADAPT. As advised for protocols using XGen Adaptase technology, WGBS reads
were further trimmed for an additional 10 bp on the 3' end of R1 and 10 bp on the 5' end of R2 to remove adaptase sequence

introduced during library preparation. No additional trimming was applied to EM-seq or 5-letter seq.

EM-seq and WGBS reads were aligned to the genome using bwa-meth (3-letter alignment) and modified Cytosines were

quantified using Methyldackel. 5-letter seq reads were preprocessed using software developed at Cambridge Epigenetix as
described in Fiillgrabe and Gosal (2023)*and subsequently aligned to the genome using BWA (4-letter alignment). Modified
Cytosines were quantified using custom software developed at Cambridge Epigenetix.
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